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Photoreaction of CpFe(CO)2Me with sterically congested
R2GeH2 [R = 2,4,6-C6H2

iPr3 (Tip), 2,4,6-C6H2Me3 (Mes)] af-
forded paramagnetic germylene-bridged diiron complexes hav-
ing a triplet ground state, Cp2Fe2(�-CO)2(�-GeR2) (3a, R =
Tip; 3b, R = Mes), while the analogous reaction with R2SnH2

afforded diamagnetic complexes Cp2Fe2(CO)2(�-CO)(�-SnR2)
(trans-5a, R = Tip; trans-5b, R = Mes). The structure of 3a was
determined by X-ray crystallography.

Among a variety of dinuclear organometallic complexes, the
ones having a triplet ground state are very rare though they are
considered to be an important class of reactive organometallic
compounds.1 We recently reported the first triplet silylene-bridg-
ed dinuclear complexes, Cp2Fe2(�-CO)2(�-SiR2) (1a, R =
2,4,6-C6H2

iPr3 (Tip); 1b, R = 2,4,6-C6H2Me3 (Mes); 1c, R =
2,6-C6H3Et2)

2a and (�5-C5Me5)2Fe2(�-CO)2{�-SiH(p-
C6H4Me)} (2).2b Since these complexes possess only nondegen-
erated MOs due to the symmetry, the triplet state of the silylene-
bridged complexes would originate in the small energy splitting
between the HOMO and the next HOMO that renders the orbi-
tals both half-filled. To gain further insight into the properties
of such complexes, we have studied the ones possessing much
heavier group 14 species as a bridging ligand. We report here
the synthesis and structure of the first germylene-bridged diiron
complexes having a triplet ground state and their reactions with
CO. The attempts to prepare the stannylene-bridged analog,
which resulted in the isolation of only diamagnetic species, are
also described.

Germylene-bridged diiron complex having a triplet ground
state, Cp2Fe2(�-CO)2(�-GeTip2) (3a), was prepared in 47%
yield by photolysis of a 2:1 mixture of CpFe(CO)2Me and steri-
cally congested diarylgermane Tip2GeH2 in pentane at 5 �C for
6 h (Eq 1).3 When the substituents on the Ge atom were less bul-
ky mesityl groups, a singlet diiron complex with three CO li-
gands, Cp2Fe2(CO)2(�-CO)(�-GeMes2) (trans-4b), was main-
ly formed as well as a small amount of triplet Cp2Fe2(CO)2-
(�-GeMes2) (3b) (Eq 2).4 Separation of these complexes from
this mixture was unsuccessful. Pure complex trans-4b was iso-
lated in 40% yield when the irradiation of a solution of
CpFe(CO)2Me and Mes2GeH2 was followed by CO bubbling,
while 3b was isolated in 13% yield when the irradiation was per-
formed with removal of CO gas. A main by-product was
Cp2Fe2(CO)4 in all cases. In the experiments monitored by 1H
NMR spectroscopy, 3b was observed to react readily with CO
(1 atm) at room temperature to give trans-4b quantitatively,
while irradiation of trans-4b yielded a substantial amount of
3b with CO dissociation. Formation of cis-4b was not observed,

probably because of large steric repulsion between the Cp groups
and the ortho-substituents on the aryl groups.
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Complex 3a is fairly stable in the solid state in air for weeks
at room temperature. It remained intact even under pressurized
CO. In contrast, 3b is highly reactive to moisture and air proba-
bly because the steric protection of mesityl groups are less effec-
tive than that of 2,4,6-C6H2

iPr3 groups. The NMR signals of 3a
and 3b exhibit the characteristic paramagnetic shifts and line
broadening.3,4 The IR spectrum of each complex shows two
�(CO) bands in a bridging CO region (1822 and 1791 cm�1

for 3a; 1806 and 1774 cm�1 for 3b).3,4 The mass spectra and el-
emental analyses of them also support their formulas.3,4

Complex 3a was structurally characterized by X-ray crystal-
lography (Figure 1).5 The overall structure of 3a is almost iden-
tical to that of the silicon analog 1a.2a The two Cp rings coordi-
nated to the iron atoms are almost parallel. The ortho-
substituents on the aryl groups are positioned to protect the
Fe2Ge three-membered ring core. The Fe–Fe distance
(2.3103(6) �A) of 3a is significantly shorter than those of related
complexes, Cp2Fe2(CO)2(�-CO)(�-GeHtBu) (2.641(1) �A)6a

and Cp2Fe2(CO)2(�-CO)(�-GeMe2) (2.628(1) �A):6b This dis-
tance is comparable to that of the complex with a formal Fe–
Fe double bond, Cp2Fe2(�-NO)2 (2.326(4) �A)7 and is similar
to triplet complexes 1a (2.303(3) �A)2a and 2 (2.300(4) �A).2b

The Fe–Ge bond distance (2.3965(4) �A) is within a range report-
ed for those of other (�-germylene)(�-carbonyl) diiron com-
plexes (2.32–2.47 �A).8

The magnetic susceptibility of 3a was measured in the solid
state on a SQUID magnetometer at 10000G. The effective mag-
netic moment (�eff) after the diamagnetic correction is constant
within 2.81–2.83 �B from 15 to 300K, which agrees well with
the theoretical value (2.83�B) for a spin-only magnetic moment
with S ¼ 1, namely the triplet state.

In contrast with the silicon and germanium cases, the photo-
reaction of CpFe(CO)2Me and diarylstannane R2SnH2 with the
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same substituents afforded only diamagnetic Cp2Fe2(CO)2-
(�-CO)(�-SnR2) (trans-5a, R = Tip; trans-5b, R = Mes) in
35 and 40% yields (Eq 3), respectively.9 No sign of formation
of the corresponding triplet complexes was observed even when
trans-5a or trans-5b was irradiated under continuous removal
of CO.
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It appears that subtle changes in the size of the bridging
atom and its substituents have a strong effect on the stability
of the triplet complexes. Triplet silylene- and germylene-bridged
complexes with congested 2,4,6-C6H2

iPr3 groups are kinetically
much stabler than those with less bulky mesityl ligands. Triplet
tin complexes corresponding to 1 and 3 seem extremely vulner-
able to the attack of CO to produce the singlet complexes 5 just
as 3b reacts with CO to give trans-4b. For the synthesis of a trip-
let tin complex, even larger substituents on Sn must be required
since the Fe–Sn bond is much longer than Fe–Si and Fe–Ge
bonds (e.g. covalent radii ( �A): Si (1.17) < Ge (1.22) < Sn
(1.40)).10 To prove this, we are now trying to introduce bulkier
ligands on the tin atom.
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Figure 1. ORTEP drawing of 3a, showing 50% thermal ellip-
soids. Selected bond lengths ( �A) and angles (�): Fe–Fe*
2.3103(6), Fe–Ge 2.3965(4), Fe–C1 1.847(2), Fe*–C1
2.008(2); Fe–Ge–Fe* 57.633(15), Fe–Fe*–Ge 61.184(8), C7–
Ge–C7* 102.86(11).
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